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SUMMARY 

The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar 
incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, 
staggered bundles of cylinders. Pitch to diameter ratios of 1.5 and 2.0 are considered for cylinders in 
equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a 
Prandtl number of 0.7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature 
contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder 
walls and drag coefficients are presented. The results obtained agree well with available experimental and 
numerical data. 

K E Y  WORDS Convective Heat Transfer Finite Elements Navier-Stokes Equations Numerical Results Penalty 
Modcl Staggered Cylinders 

INTRODUCTION 

The hydrodynamic and heat transfer characteristics of fluid flow around cylinders are of interest in 
the design of heat exchangers, boilers, condensers, nuclear reactors, etc. Investigations on the flow 
and heat transfer for a bundle of cylinders in cross-flow have been undertaken by numerous 
researchers. Experimental data on fluid mechanics and heat transfer of flow around staggered 
cylinders have been presented by Zukauskas,' Aiba et al.,' Kostic and Oka3 and Bergelin et  ~ 1 . ~ ~ ~  
Experimental data on the effect of pulsation of the free stream on flow and heat transfer 
characteristics for multiple cylinders have been presented by Vanden Berghe et aL6 Numerical 
studies using finite-difference methods for fluid flow and heat transfer across multiple cylinders 
have appeared recently. LeFeuvre7 obtained a finite-difference solution for an in-line bank with 
uniform tube wall temperature. Launder and Massey' obtained a finite-difference solution for the 
inner row of a staggered tube bank with the assumption of uniform wall heat flux. Fuj i  et aL9 used 
the one-step-forward half-step-backward iteration hybrid finite-difference method to solve the 
stream function-vorticity and energy equations for a five-row in-line tube bank. Antonopoulos" 
used the finite-difference method to solve the transport equations in curvilinear co-ordinates for 
turbulent inclined flow past an interior region of a tube bank. The present paper offers penalty 
finite-element solutions to the problems of flow across staggered bundles of cylinders, with uniform 
wall temperature. 

The problem under consideration here offers physical insight into the development of the flow 
and the accompanied heat transfer characteristics as we move deeper into the bundle. In this sense, 

0271-2091/87/121325-18$09.00 
0 1987 by John Wiley & Sons, Ltd. 

Received 5 M a y  1986 
Revised 21 January 1987 



1326 M. N. DHAUBHADEL, J. N. REDDY AND D. P. TELIONIS 

therefore, this paper extends the work of Fuj i  et d9 to bundle geometries more common in 
practice, employing a powerful numerical method which so far has not been used for the solution 
of such problems. 

The finite-element method allows suitable representation of the complicated geometry of 
multiple cylinders without having to use curvilinear co-ordinates or mapping. Moreover, flux and 
stress boundary conditions of the flow can be imposed in a natural way without requiring 
difference approximations. Finite-element simulations of flow past a single- cylinder have been 
presented by Kawahara and Hirano," Gresho et a1.,12 Brooks and Hughes13 and Benque et d . 1 4  

A penalty finite-element solution for flow and heat transfer around in-line bundles of cylinders was 
recently obtained by the a ~ t h 0 r s . I ~  

This paper presents a penalty finite-element model to solve the Navier-Stokes equations and the 
energy equation as applied to laminar incompressible flow across a staggered bundle of cylinders. 
Five-row-deep bundles of cylinders in two equilateral triangular arrangements and a square 
arrangement are studied. Pitch to diameter ratios of 1.5 and 2.0 are considered. Reynolds numbers 
studied range from 100 to 400, and the Prandtl number is assumed to be 0.7. 

THEORETICAL CONSIDERATIONS AND THE PENALTY 
FINITE-ELEMENT MODEL 

For two-dimensional laminar flow of an incompressible fluid with negligible viscous dissipation, 
the Navier-Stokes equations and the energy equation in non-dimensional form can be written as 

( 1 )  

(2) 
av a v  1 a au av 2 ap  u-+v-=-- -+- +----+f,, ax ay  R e a x ( a y  a x )  R e a y 2  ay  

au av -+-=o, ax  ay (3) 

(4) 

where (u, v), p ,  ( f x ,  f,), 8 are the non-dimensional velocity components, pressure, body force 
components and temperature, respectively, Re denotes the Reynolds number and Pr denotes the 
Prandtl number. 

The penalty function formulation of equations (1)-(3) over a typical element Re with boundary 
re is given by (see References 16-19 for details on the penalty function formulation) 

1 1 aw, au av 2 aw,av 
Re ay  ay 0 = [ w2( ME + u s )  + %=( 5 + i.> + --- - w z f ,  dxdy 
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where w 1  and w2 are the weight functions associated with u and v,  respectively, y is the penalty 
parameter, and n, and ny are direction cosines. The coefficients of w1 and w2 in the boundary 
integrals of equations (5) and (6) are denoted by t ,  and t,, respectively. They represent the x- and 
y-components of the boundary stress vector. The body force terms in equations (5) and (6) are 
neglected. The variational formulation of energy (4) is given by 

where w3 denotes the weight function associated with 8. The coefficient of w 3  in the boundary 
integral of equation (7) is denoted by to, which denotes the non-dimensionalized boundary heat 
flux. Temperature is viewed as an inert scalar quantity transported and diffused according to  the 
velocity field. 

Let the dependent variables u, v and 8 be interpolated over a typical element by expressions 
of the form 

n n n 

u = c u ~ $ ~ ,  U =  C vjt+hj, 8= C e j$ j ,  
j =  1 j =  1 j =  1 

where $ j  are the finite-element interpolation f ~ n c t i o n s , ' ~ . ~ ~  u j ,  v j  and O j  are the nodal values of u, v 
and 8, respectively, and n denotes the number of nodes in the element. 

Substituting equation (8) into equations (5)-(7), we obtain the ith element equations associated 
with equations (5)-(7) 

n n c l?,!j' uj  + c Kl!j'vj - F,? = 0,  
j =  1 j =  1 

(9) 

2 l?fjej - FY = 0. 
j =  1 

These equations can be written in matrix form as 

where 
CK'l{e}  = {Fe } 2 

[K"] = [K"] + [C] +y[S"], 

[K"] = [K12] + y[S"], 

[ K 2 l 3  = [KZ1]  + y[S2'], 

[K22] = [K"] + [GI + y[S"], 

2 1 
[K"] = E [ S " ]  +-[S"], Re 

1 
Re 

2 

[K12] = [K21]T = - [S12]', 

[K22] = [S"] =Z[S"], 
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1 
CK'1 = RePr {CS"l+ cs221} +[GI 

The coefficient matrices in the above equations are given by the following integral expressions: 

" " 

r r 

where uo and uo are velocities from a previous iteration. 
From convergence and stability con~iderations,'~ a reduced integration technique is used to 

evaluate the penalty terms (i.e. coefficients of y in equation (12)). For the bilinear element (n = 4) 
employed in the present study, a 2 x 2 Gauss quadrature is used to evaluate all coefficients except 
the penalty terms, for which 1 x 1 quadrature is employed. Because of the presence of non-linear 
(convective) terms, the coefficient matrices for the Navier-Stokes equations are asymmetric, and 
an iterative solution is required. In the present study the direct (Picard type) iteration is used with 
initially zero velocity everywhere inside the computational domain, and convergence is assumed 
when the Euclidean norm of the velocities computed at two consecutive iterations is less than an 
error tolerance of 0.01 per cent. The energy equation (13) is solved using the velocity field obtained 
from equation (12). The secondary quantities, namely the pressure and the gradients of velocity 
and temperature, are computed at Gauss points. In the penalty function formulation the negative 
of pressure acts as a Lagrange parameter and the pressure is evaluated in post-computation by 

where the subscript n indicates values computed from the converged velocity field. 

DISCUSSION O F  THE NUMERICAL RESULTS 

The physical models of flow around five-row-deep (finite) staggered bundles of cylinders in three 
different configurations are shown in Figures l(a), l(b) and l(c). The computational domain is 
shown by the thick dotted line in Figure l(a). For relatively low Reynolds numbers and closely 
packed cylinders, it is reasonable to assume that the wake ofeach cylinder is symmetric. In fact, no 
shedding occurs, even for relatively high Reynolds numbers, if the cylinders are tightly packed. It is 
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Figure 1. Physical model and computational domain of a live-row deep staggered bundle of cylinders: (a) cylinders in 
equilateral arrangement; (b) cylinders in equilateral arrangement turned at 90" with respect to free stream as compared 

to (a); (c)  cylinders in staggered square arrangement 

assumed here that the flow is steady, and symmetry lines exist as depicted in Figure 2. The 
boundary conditions employed in the present computations are also indicated in this Figure. 
Figure 3 shows a typical finite element mesh used. The nodal co-ordinates and the connectivity 
matrix, including the boundary conditions, are generated with the computer program for any 
number of rows in a bundle with the minimum of input parameters. The finite element mesh is 
designed in a way which provides a denser mesh in the boundary layers and along the free shear 
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(b) 

Figure 3(a). Finite element mesh with 481 I nodes and 4512 elements. (b) Detail of the finite element mesh 

layers. For the Reynolds numbers considered, approximately 5 to 6 grid points fall within the 
boundary layer. This ensures reasonable resolution of boundary-layer effects near cylinder 
walls. The thickness of an element increases in geometrical proportion away from the cylinder 
surface. Two different finite-element meshes were used in the computations in order to ascertain 
that the discretization error is reduced to an acceptable level. Also, two different sets of inlet and 
outlet straight portions were used to consider the effects of the upstream and downstream 
boundary locations. Figure 3(a) shows the finite element mesh used with 481 1 nodes and 4512 
elements. The other mesh employed has a similar finite element discretization with slightly different 
inlet and outlet boundary locations and with a total of 3679 nodes and 3384 elements. The results 
obtained in terms of different fluid dynamic quantities discussed later indicate that the 
discretization error and the effect of inlet and outlet boundary locations are minimized to 
acceptable levels for the two mesh configurations used. The computations were carried out on 
a CRAY-XMP computer. A typical run for Re = 100 takes 190s (CPU + I/O) and 20 iterations 
for convergence. 

Figure 4(a) shows a typical velocity vector field obtained for an equilateral triangular 
arrangement with pitch to diameter ratio of 1.5 and a Reynolds number of 100 based on velocity at 
the minimum cross-section. The velocity profiles at sections 1-1 and 2-2 (see Figure 3(a)) for the 
two mesh configurations are plotted for comparison and are shown in Figure 4(b). The differences 
in the velocity profiles at the two sections are small, indicating that the discretization error is 
negligible for the two mesh configurations used. Figures 3(a) and 4(a) indicate that the velocity 
field after the third cylinder is almost fully developed. The difference in velocity field between 
regions I and I1 in Figure 2 is 0.75 per cent. The flow field in each of the three configurations is 
similar for different Reynolds numbers in the range studied. For a Reynolds number of 100 
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Figure 4(a). Enlarged view of velocity vectors in the region between I and 11 in Figure 2 
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Figure 4(b). u- and u-velocity profiles at section 5 1-1  and 2-2 (see Figure 3) for the two mesh configurations with 
different numbers of nodes and different inlet and outlet boundary locations 
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reattachment occurs at about 30" on the front of the cylinders and the separation point lies near 
145". Recirculating flow is trapped between cylinders which appears to be similar to cavity flows. 

Figure 5(a) shows the streamlines for flow past a staggered bundle of cylinders in an equilateral 
triangular arrangement for Re = 100. Reattachment and separation points for the intermediate 
cylinders are seen to occur around 30" and 145", respectively. The gaps between the cylinders 
enclosed by the = 0 and i,bmax = 1.30 contours indicate recirculating regions. Streamlines in 
regions I and 11 of Figure 2 are almost identical, indicating fully developed flow in these regions. A 
pair of elongated vortices is seen behind the last row. Figures 5(b), 5(c) and 5(d) show typical plots 
of isotherms, isobars and isovorticity lines for Re = 200. The contours plotted represent the non- 
dimensional quantity w' = (w - wmin)/(wmax - urnin) which range from 0 to 1, o being pressure p, 
temperature 0 or vorticity [ as the case may be. The overall pattern of the contours in all the cases 
remains similar for different Reynolds numbers and pitch-to-diameter ratios. When dissipation is 
negligible, the equations governing the fields of temperature and vorticity are identical. As a 
consequence, the isotherms and isovorticity lines have similar patterns, as can be seen from 
Figures 5(b) and 5(d). The isobars in turn indicate a uniform pressure in the cavity regions and a 
characteristic bulge in the neighbourhood of reattachment. In Figure 5(e) streamlines and isobars 
are plotted together to expose the relation between the kinematics and the traction forces in the 
system. Near the walls of the cylinders, one can identify maxima in the pressure distribution, very 
near the points of reattachment. Downstream of reattachment and near the wall, the pressure 
drops mainly due to the inviscid effect of accelerating flow. However, beyond the hump of each 
cylinder, the pressure does not recover, owing to viscous effects and thus pressure drops 
continuously in the direction of the flow. 

1 3  1 3  

0 0 

Figure 5(a). Streamlines $ with A$ = 0.1 except for the vortex region behind the last row (A$ = 005) for the equilateral 
triangular arrangement in Figure I (a)  with Re = 100 and P/D = 1.5 

Figure 5(b). Isotherms B with A0 = 0.1 and U,,, = 1.0 on cylinder surfaces for the five-row-deep bundle of cylinders in 
Figure 1 (a); Re = 200, P/D = 1.5 and Pr = 0.7 
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Figure 5(c). Isobars of p’ = ( p  - pmin)/(pmax - pmin) with Ap‘ = 0.05 for the live-row deep bundle of cylinders in 
Figure 1 (a); Re = 200, P / D  = 1.5 

Figure 5(d). Isovorticity lines of = (( - - with AC’ = 0.05 for the five-row-deep bundle of cylinders in 
Figure 1 (a); Re = 200, P / D  = 1.5 

Figure 5(e). Streamlines (bold lines) and isobars (faint lines) between the third and fourth cylinders of a live-row-deep 
staggered bundle of cylinders; Re = 100, P / D  = 1.5 
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Figure 6(a). Distribution of skin friction coefficient around the five cylinders of Figure 1 (a) for Re = 200, P/D = 1.5 
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Figure 6(b). Distribution ofskin friction coefficient around the bottom fourth cylinder in Figure l(a) . .r  different Reync 
numbers and P/D = 1.5 
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Figure 6(c). Distribution of skin friction coefficient around the five cylinders for Re = 200, P/D = 2.0 
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Figures 6(a), 6(b) and 6(c) show the distribution of skin friction coefficient (cf = 2/(4p U : ) )  
for a line of cylinders with the configuration shown in Figure l(a). The point of reattachment 
(cf = 0) is near 40" for all cylinders after the first. The point of separation (cf = 0) occurs near 
130". Figure 6(b) shows the distribution of skin friction coefficient for the fourth cylinder at 
different values of Reynolds numbers. The point of reattachment moves from 30" to 50" and the 
separation point moves from 135" to 110" as the Reynolds number is increased from 100 to 400. 
For a particular Reynolds number, the point of reattachment and point of separation have 
approximately the same angular positions for all cylinders. Figure 6(c) gives the skin friction 
coefficient distribution around the cylinders for a pitch to diameter ratio of 2.0. Figure 6(d) 

RE-ZOO PDR=1.5 

0 FIRST ROW 
+ SECOND RON 
x THIRD ROW 
m FOURTH RCW 
6 FIFTH RON 

Figure Distribution 

. 00 

of skin friction coefficient around the five cylinders in Figure l(c) 
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Figure 7(a). Distribution of coefficient of pressure around the five cylinders numbered in Figure 1 (a) for R e  = 200, 
P / D  = 1.5 
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shows the skin friction coefficient around the cylinders for the case of the staggered square 
arrangement of Figure I(c). 

Figure 7(a) shows the distribution of pressure coefficient (cp = ( p  - p o ) / ( i p  U L ) )  for the bottom 
five cylinders in the computational domain of Figure l(a). Here p o  is the pressure at 4 = 0" on the 
cylinder and p is the pressure along its surface. The pressure distribution for the first row is similar 
to the pressure distribution for a single cylinder except that separation occurs much further 
downstream, at approximately 4 = 140". This is verified by the fact that the point of minimum local 
Nusselt number and the point of minimum coefficient of skin friction occur at  near 4 = 140". The 
pressure drop from one row to the next for the middle rows is almost uniform. Pressure 
distributions for the third and the fourth rows are almost identical, indicating that the flows around 
them are dynamically similar. The distribution of pressure coefficient for the fourth cylinder at 
different Reynolds numbers is shown in Figure 7(b). The pressure coefficient is higher for higher 
Reynolds number and the pressure drop across a cylinder is higher for lower Reynolds number. 
Moreover, one can detect once more by the flattened portion of the distributions the fact that the 
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Figure 7(b). Distribution ofcoefficient of pressure around the fourth cylinder in Figure 1 (a) for different Re and P / D  = 1.5 
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Figure 7(c). Distribution of coefficient of pressure around the five cylinders in Figure l(a) for Re = 200, P / D  = 2.0 
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size of the separated region increases as the Reynolds number increases. Figure 7(c) shows the 
distribution of the coefficient of pressure around the cylinders for a pitch-to-diameter ratio of 2. As 
can be seen from Figures 7(a) and 7(c), for higher pitch-to-diameter ratio the pressure drop across a 
cylinder is lower. Figure 7(d) gives the pressure coefficients for the cylinders in Figure l(c). 
Figure 7(e) shows a typical pressure distribution, (cp = ( p  - p,,)/(+p U ; ) ) ,  where pin is the stagnation 
pressure on the first cylinder, along the top (AB) and the bottom (CD) lines of Figure l(a) for 
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Figure 7(d). Distribution of coefficient of pressure around the five cylinders in Figure 1 (c) for Re = 200 and P / D  = 1.5 
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Figure 7(e). Streamwise distribution of coefficient of pressure along lines AB and C D  in Figure l(a) for Re = 200, 

PID = 1.5 and P r  = 0.7 
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Re = 200 and P / D  = 1.5. This Figure displays most clearly the almost uniform rate of pressure 
drop across a row of cylinders. 

Distributions of local heat transfer coefficient around the five cylinders (see Figure I(a)) are 
shown in Figures 8(a), 8(b) and 8(c). The Nusselt number, N u  is based on the difference between the 
wall temperature and the bulk temperature along the vertical line through the centre of the cylinder 
under consideration. Thus 

where Ti, is the inlet temperature and r is the radial co-ordinate. 
The local Nusselt number distribution has the same form for all the cylinders except the front 

and the last cylinders. The local Nusselt number distribution shows only a small change for the 
middle rows. The maximum Nusselt number for the bottom line of cylinders in Figure l(a) 
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Figure 8(n). Distribution of local heat transfer coefficient around the bottom five cylinders of Figure I(a) for 
Re = 200, P/D = 0.5 and Pr = 0.7 
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Figure 8(b). Distribution of local heat transfer coefficient around the fourth cylinder in Figure l(a) for different Re and 
PJD = 1.5 
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Figure 8(c). Distribution of local heat transfer coefficient around the five cylinders in Figure 1 (a) for Re = 200, P / D  = 2.0 
and Pr = 0.7 

occurs near 60", except for the front cylinder for which the maximum occurs at near 25". It is 
observed that for flow coming onto a single cylinder, the local heat transfer has a continuously 
decreasing slope around 4 = 0". However, in the present case the flow is disturbed by the front 
cylinders in the adjacent columns and the local heat transfer has a positive slope at 4 = 0". 
Pitch-to-diameter ratio and the particular arrangement of the cylinders are seen strongly to 
influence this behaviour. Figure 8(b) shows the local Nusselt number distribution for the fourth 
row bottom cylinder at different Reynolds numbers. It is seen that, although the average heat 
transfer coefficient increases with higher Reynolds numbers, the local heat transfer coefficient is 
not higher everywhere around the cylinder. This is due to the fact that the size of the separated 
region, where the heat transfer is low, increases with Reynolds number. Figure 8(c) gives the 
distribution of local Nusselt number for P / D  of 2.0. From Figures 8(a) and 8(c) it can be seen 
that the coefficient of heat transfer decreases with the increase of pitch-to-diameter ratio. In 
other words more compact cylinders at these Reynolds numbers will improve heat transfer 
characteristics, but will lead to larger pressure drops, and therefore higher flow resistance. 
Figure 8(d) shows the distribution of local heat transfer coefficient around the cylinders for the 
staggered square arrangement. 

Figure 9 shows the averaged heat transfer coefficients for a pitch-to-diameter ratio of 1.5 for 
the three cases of staggered bundles of cylinders. The experimental results of Bergelin et aL5 
and the numerical results of Antonopoulos" are also shown for comparison. The averaged 
Nusselt number is based on a log-mean temperature difference defined by 

The present results are in good agreement with the experimental results of Bergelin et al. and 
the numerical results of Antonopoulos. 

The drag coefficients, defined as cd = (p - pin/(*npUk), for different Reynolds numbers are 
shown in Figure 10 for the case of Figure l(a). The results of Bergelin et al. and Antonopoulos 
are shown for comparison. The present results predict slightly higher values of the drag coefficients 
as compared to the results of Bergelin et aL5 and Antonopoulos." 
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CONCLUSIONS 

The method presented here is readily available for a parametric study, in which the geometrical 
parameters and the Reynolds and Prandtl numbers can be varied to provide comparative 
information. The method generates important integral characteristics, such as overall flow 
resistance or heat transfer. Detailed local distributions of heat flux, skin friction and pressure 
are also generated. 

The local distribution of skin friction, pressure and heat transfer coefficients are consistent 
with the flow characteristics indicated by streamlines, velocity field vectors, isobars, isovorticity 
lines and isotherms. The averaged heat transfer coefficients are in good agreement with available 
experimental and numerical results. The coefficient of pressure is higher for higher Reynolds 
number, but pressure drop across a cylinder is lower for higher Reynolds number. For higher 
pitch-to-diameter ratio the coefficient of heat transfer and also the flow resistance are lower for 
a particular Reynolds number. In the range of Reynolds numbers studied, the staggered square 
arrangement gives a higher value of the averaged heat transfer coefficient as compared to either 
case of the equilateral triangular arrangements. 
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